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LONG-TERM GOAL

To describe and understand the changes that occur in internal waves as they evolve and propagate
shoreward over the shelf break into shallow, near-shore waters.

OBJECTIVES

To carry out fieldwork and to analyze the resulting data for a description of the fields of temperature
and of vertical and horizontal velocity in shoaling internal waves with much finer spatial resolution
and longer duration than previous descriptions; to use this description to estimate the relative
importance of dissipation, wave dispersion, shoaling depth and various types of nonlinearity in
shoaling internal waves; to construct a dynamically informed model of the observed wave field
suitable for carrying offshore observations to stations nearer the shore and for studying wave induced
secondary flows and particle paths. This work will constitute the Ph.D. thesis of graduate student Jim
Lerczak.

APPROACH

Internal wave “antennas’ composed of moored Acoustic Doppler Current Profilers (ADCPs) generaly
covering the middle 75% of the water column plus one to seven continuously recording temperature
loggers distributed along the mooring line were deployed in waters just offshore of San Diego at
depths ranging from 15 m to 500 m during the summer and fall of 1996 and 1997. Simultaneous
meteorological observations are available from Scripps Pier in La Jolla. CTD yo-yo’'s were carried out
over periods ranging from about 3 to 24 hours during mooring deployment, service and recovery, and a
bottom pressure sensor was deployed at the 15 m mooring. The instruments were removed from the
water early in FY98.

WORK COMPLETED

All ADCP and temperature logger time series, as well as the pressure sensor series have been
processed into a form suitable for analysis. Basic statistical anayses (e.g. spectra, empirical orthogonal
function representations of variously band-passed data) have been constructed. Construction of a web
site describing the experiment and data (http://www-ccs.ucsd.edu/iwaves) has begun.
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RESULTS

Mode one internal waves explain approximately 80% of the high-frequency (buoyancy frequency to 1
cph) variance in shallow water (15 to 30 m). The critical internal wave frequency for the nearshore
region of the continental slope is approximately 7 hours, so that the high-frequency waves are very
subcritical. The internal wave field is dominated by onshore propagating undular bores and solitary-
like events, in addition to apparently independent near-buoyancy frequency motions. Wave packets
generdly arrive at the nearshore study site on a semi-diurnal schedule. Long-wave phase speeds
decrease from approximately 25 cm/sto 12 cm/s as the waves propagate from a water depth of 30 mto
15 m. The dissipation time scale is approximately 2 hours, so that the waves decay significantly over
the time (approximately 3 hours) it takes them to cross the nearshore array (deltax = 1.5 km). A simple
dissipative linear model cannot carry 30 m data to the 15 m mooring. Consequently, non-linearities
appear to be important. Thereislittle or no correlation in the high-frequency band between the 70 m
and 100 m records with the 15 to 30 m records.

IMPACT/APPLICATION

The data provide a new degree of vertical and horizontal resolution of the velocity and temperature
fields associated with internal borelike and apparently solitary disturbances in shallow (tens of m)
water during summertime and early fall. Vertical velocities are clearly not significantly contaminated
by instrument tilt and/or bottom slope effects. These data will allow new detail in delineating the
realistic range of parameter space associated with weakly nonlinear dynamical models of shoaling,
dissipative internal disturbances. The resulting dynamically informed description of the shoaling
internal wave field will be useful both for nearshore acoustic studies and for nearshore biological
studies. The studies will also provide insight into the role of internal waves in the mixing of the
nearshore region of the continental shelf and the significance of internal wave generated secondary
currents in the nearshore circulation.

RELATED PROJECTS

Dr. Peter Franks (SIO) and Ms. Cleridy Lennert are studying internal wave-induced changesin the
concentration of planktonic organisms as well as the importance of large-amplitude, nonlinear internal
waves to the cross-shelf transport of these organisms. The data from our nearshore ADCPs has been
very useful for their research.
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Figure 1. Top: Map of the 1996/97 I nternal Waves on the Continental Margin experiments off
Mission Beach, CA. The large circlesindicate the locations of moorings which were equipped with
Acoustic Doppler Current Profilers (ADCPs) which measured the three current components as
function of time and depth and temperature loggers (TLs) secured to the mooring line which
measured temperature fluctuations at fixed depths as a function of time. Bottom: Various array
configurations used in the study of the internal wave field in nearshore region of the continental
shelf. Thelarge circlesindicate locations of moorings which were equipped with a bottom-mounted,
upward-looking ADCP, and four TLs evenly spaced in the water column. Single, mid-column TLs
(indicated by the solid, black circles) were deployed along the 30 m isobath for a period of about one
month during the summer of 1997.
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Figure 2. a) Mode one EOF amplitude time series of vertical velocity calculated for
each of the seven nearshore moorings deployed in the fall of 1996. b) Mode one
EOF amplitude time series of temperature fluctuations calculated for each of the

seven nearshore moorings deployed in the fall of 1996.
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Figure 3. Mode one EOF variance of vertical velocity versustime for four of the
seven nearshore moorings deployed during the fall of 1996. The data was divided
into 33 h blocks, and the EOF s were calculated at each mooring for each of these

blocks. The time series shows how the variance (smoothed over 33 h) varies over
time. The varianceis scaled to give an estimate of the vertically integrated vertical

kinetic energy (1/2 x wo? x D, where w is the variance at the depth of maximum
variance and D isthe water depth). Thetime series are clearly correlated and the
variance decays monotonically from the 30 m mooring to the 15 m mooring.



